---
title: "wyz.code.rdoc use cases"
author: "Fabien GELINEAU"
date: "Last update 2020 - Q1"
output:
rmarkdown::html_vignette:
number_sections: true
toc: false
css: style.css
vignette: >
%\VignetteIndexEntry{wyz.code.rdoc use cases}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r setup, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = ""
)
source('common-style.R')
```
```{r context, eval = TRUE, echo = FALSE}
library("data.table")
library("wyz.code.offensiveProgramming")
library("wyz.code.rdoc", warn.conflicts = FALSE)
```
This use-case vignette is dedicated to some common manual page use case generation using package `r rdoc`.
It may make sense for newcommers to read the tutorial vignette prior to read this vignette.
# Manual page generation from a function
## Standard `r R` function {.tabset .tabset-fade .tabset-pills}
I will consider function `r citecode('append')` from base package as example. Any other `r R` function may work as well.
### code
```{r function_mpg, eval = TRUE, echo = TRUE}
b <- beautify()
examples <- list(
function() { append(1:5, 0:1, after = 3) }
)
ic <- InputContext(NULL, 'append')
pc <- ProcessingContext(
extraneous_l = list(
title = 'Vector Merging',
description = sentensize('add elements to a vector'),
details = paste('If the parameter', b$code('after'), 'is higher than' ,
b$code('x'), 'length,\n then insertion is done at the',
'end of the data structure'),
references = paste('Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)',
'The New S Language. Wadsworth & Brooks/Cole.'),
examples = convertExamples(examples, captureOutput_b_1n = FALSE)
),
postProcessing_l = list(
arguments = function(content_s) {
s <- sub('XXX_001', sentensize('the vector the values are to be appended to'),
content_s, fixed = TRUE)
s <- sub('XXX_002', sentensize('to be included in the modified vector'), s, fixed = TRUE)
s <- sub('XXX_003',
'a subscript, after which the values are to be appended',
s, fixed = TRUE)
s
}
)
)
td <- tempdir()
gc <- GenerationContext(td, overwrite = TRUE)
rv <- produceManualPage(ic, pc, gc)
```
**NOTA BENE**: Embedded new line characters in previous text are present for vignette format purpose
only here, in particular to avoid horizontal scrollbars and to ease reading. Indeed, sometimes you will have to do so, to avoid producing too long lines in `r R` documentations files, as this will generate a warning when running `r citefun('R CMD check')`. If you plan to publish your package on `r citefun('CRAN')`, you will have to resolve such warning cases.
### generated `r citecode('.Rd')` file
```{r function_mpg_rv, eval = TRUE, echo = TRUE}
readLines(rv$context$filename)
```
### generated content as picture
![generated append documentation](images/append.png)
### original content
![base R append documentation](images/append-orig.png)
## Semantic naming function {.tabset .tabset-fade .tabset-pills}
Let's consider following function, respectful of semantic naming as defined by offensive
programming. Refer to [Offensive programming book](https://neonira.github.io/offensiveProgrammingBook/) to get introduction and advanced knowledge on offensive programming advantages, practice and ecosystem.
```{r op, eval = TRUE, echo = TRUE}
iterateOverSet <- function(set_s, enforceUniqueness_b_1 = TRUE) {
NULL
}
```
The body is set to `r citecode('NULL')` for demonstration purpose and to prove
that it does not interfere with documentation generation.
### code
```{r op_mpg, eval = TRUE, echo = TRUE}
examples <- list(
function() { iterateOverSet(sample(LETTERS, 35, TRUE), FALSE) },
function() { iterateOverSet(as.character(1:9)) }
)
ic <- InputContext(NULL, 'iterateOverSet')
pc <- ProcessingContext(
extraneous_l = list(
examples = convertExamples(examples, captureOutput_b_1n = FALSE)
)
)
rv_op <- produceManualPage(ic, pc, gc)
```
### generated `r citecode('.Rd')` file
```{r op_mpg_rv, eval = TRUE, echo = TRUE}
readLines(rv_op$context$filename)
```
### generated content as picture
![generated append documentation](images/iterateOverSet.png)
### Main differences
Main differences with standard `r R` function generation are, using semantic naming scheme, you do not have to
1. provide content for arguments. It is automatically deduced from the semantic name you use
1. provide a title. It is deduced from the function name.
1. provide a description. It is also deduced from the function name.
You can still change or adapt provided content by a post processing whenever and wherever needed to meet sharper documentation level.
# Manual page generation from an environment object
## Standard `r R` object {.tabset .tabset-fade .tabset-pills}
I will consider class named `r citecode('MeltingPot_Env')` to produce an object based on an environment containing several functions.
### code
```{r eval = TRUE, echo = TRUE}
source(findFilesInPackage('classes', 'wyz.code.offensiveProgramming')[1])
ic <- InputContext(MeltingPot_Env())
rv <- produceManualPage(ic, generationContext = gc)
```
**NOTA BENE**: I use default processing context here. This means, only defaultly valuable documentation sections will be filled-in.
### generated `r citecode('.Rd')` file
```{r eval = TRUE, echo = TRUE}
readLines(rv$context$filename)
```
### generated content as picture
![generated append documentation](images/r-env.png)
## Offensive programming object {.tabset .tabset-fade .tabset-pills}
I will consider class named `r citecode('Zorg')` to produce an object based on an environment containing several functions. This class is partially offensive programming instrumented.
### code
```{r eval = TRUE, echo = TRUE}
ic <- InputContext(Zorg())
rv <- produceManualPage(ic, generationContext = gc)
```
### generated `r citecode('.Rd')` file
```{r eval = TRUE, echo = TRUE}
readLines(rv$context$filename)
```
### generated content as picture
![generated append documentation](images/op-env.png)
### Main differences
There exists only very few differences between standard `r R` and `r citefun('offensive programming')` class documentation generation. Using the later allows to benefit from instrumentation and allows to run dynamic checks instead of static checks.
# Manual page generation from an S3 object
## Standard `r R` object {.tabset .tabset-fade .tabset-pills}
I will consider class named `r citecode('Bu_S3')` to produce an object based on S3 class scheme containing several functions.
### code
```{r eval = TRUE, echo = TRUE}
ic <- InputContext(Bu_S3())
rv <- produceManualPage(ic, generationContext = gc)
```
### generated `r citecode('.Rd')` file
```{r eval = TRUE, echo = TRUE}
readLines(rv$context$filename)
```
### generated content as picture
![generated append documentation](images/r-s3.png)
## Offensive programming object {.tabset .tabset-fade .tabset-pills}
I will consider class named `r citecode('Addition_TCFI_Partial_S3')` to produce an object based on a S3 class containing several functions. This class is partially offensive programming instrumented.
### code
```{r eval = TRUE, echo = TRUE}
source(findFilesInPackage('Addition_TCFI_Partial_S3.R', 'wyz.code.offensiveProgramming')[1])
ic <- InputContext(Addition_TCFI_Partial_S3())
rv <- produceManualPage(ic, generationContext = gc)
```
### generated `r citecode('.Rd')` file
```{r eval = TRUE, echo = TRUE}
readLines(rv$context$filename)
```
### generated content as picture
![generated append documentation](images/op-s3.png)
### Main differences
There exists only very few differences between standard `r R` and `r citefun('offensive programming')` class documentation generation. Using the later allows to benefit from instrumentation and allows to run dynamic checks instead of static checks.
# Manual page generation from an S4 object
## Standard `r R` object {.tabset .tabset-fade .tabset-pills}
I will consider class named `r citecode('Person_S4')` to produce an object based on S4 class scheme containing several functions.
### code
```{r eval = TRUE, echo = TRUE}
ic <- InputContext(new('Person_S4', name = 'neonira'))
rv <- produceManualPage(ic, generationContext = gc)
```
### generated `r citecode('.Rd')` file
```{r eval = TRUE, echo = TRUE}
readLines(rv$context$filename)
```
### generated content as picture
![generated append documentation](images/r-s4.png)
## Offensive programming object {.tabset .tabset-fade .tabset-pills}
I will consider class named `r citecode('Addition_TCFI_Partial_S4')` to produce an object based on a S4 class containing several functions. This class is partially offensive programming instrumented.
### code
```{r eval = TRUE, echo = TRUE}
source(findFilesInPackage('Addition_TCFI_Partial_S4.R', 'wyz.code.offensiveProgramming')[1])
ic <- InputContext(new('Addition_TCFI_Partial_S4'))
rv <- produceManualPage(ic, generationContext = gc)
```
### generated `r citecode('.Rd')` file
```{r eval = TRUE, echo = TRUE}
readLines(rv$context$filename)
```
### generated content as picture
![generated append documentation](images/op-s4.png)
### Main differences
There exists only very few differences between standard `r R` and `r citefun('offensive programming')` class documentation generation. Using the later allows to benefit from instrumentation and allows to run dynamic checks instead of static checks.
# Manual page generation from an RC object
## Standard `r R` object {.tabset .tabset-fade .tabset-pills}
I will consider class named `r citecode('Person_RC')` to produce an object based on RC class scheme containing several functions.
### code
```{r eval = TRUE, echo = TRUE}
ic <- InputContext(new('Person_RC', name = 'neonira'))
rv <- produceManualPage(ic, generationContext = gc)
```
### generated `r citecode('.Rd')` file
```{r eval = TRUE, echo = TRUE}
readLines(rv$context$filename)
```
### generated content as picture
![generated append documentation](images/r-rc.png)
## Offensive programming object {.tabset .tabset-fade .tabset-pills}
I will consider class named `r citecode('Addition_TCFI_Partial_RC')` to produce an object based on an RC class containing several functions. This class is partially offensive programming instrumented.
### code
```{r eval = TRUE, echo = TRUE}
source(findFilesInPackage('Addition_TCFI_Partial_RC.R', 'wyz.code.offensiveProgramming')[1])
ic <- InputContext(new('Addition_TCFI_Partial_RC'))
rv <- produceManualPage(ic, generationContext = gc)
```
### generated `r citecode('.Rd')` file
```{r eval = TRUE, echo = TRUE}
readLines(rv$context$filename)
```
### generated content as picture
![generated append documentation](images/op-rc.png)
### Main differences
There exists only very few differences between standard `r R` and `r citefun('offensive programming')` class documentation generation. Using the later allows to benefit from instrumentation and allows to run dynamic checks instead of static checks.
# Manual page generation from an R6 object
## Standard `r R` object {.tabset .tabset-fade .tabset-pills}
I will consider class named `r citecode('Accumulator_R6')` to produce an object based on R6 class scheme containing several functions.
### code
```{r eval = TRUE, echo = TRUE}
ic <- InputContext(Accumulator_R6$new())
rv <- produceManualPage(ic, generationContext = gc)
```
### generated `r citecode('.Rd')` file
```{r eval = TRUE, echo = TRUE}
readLines(rv$context$filename)
```
### generated content as picture
![generated append documentation](images/r-r6.png)
## Offensive programming object {.tabset .tabset-fade .tabset-pills}
I will consider class named `r citecode('Addition_TCFI_Partial_R6')` to produce an object based on an R6 class containing several functions. This class is partially offensive programming instrumented.
### code
```{r eval = TRUE, echo = TRUE}
source(findFilesInPackage('Addition_TCFI_Partial_R6.R', 'wyz.code.offensiveProgramming')[1])
ic <- InputContext(Addition_TCFI_Partial_R6$new())
rv <- produceManualPage(ic, generationContext = gc)
```
### generated `r citecode('.Rd')` file
```{r eval = TRUE, echo = TRUE}
readLines(rv$context$filename)
```
### generated content as picture
![generated append documentation](images/op-r6.png)
# Manual page generation for a package
## Standard `r R` object {.tabset .tabset-fade .tabset-pills}
I will consider package named `r citecode('wyz.code.rdoc')` as example to generate a package manual page.
### code
```{r eval = TRUE, echo = TRUE}
ic <- InputContext(NULL, package = 'wyz.code.rdoc') # using an
pc <- ProcessingContext(
postProcessing_l = list(
details = function(content_s) NULL
)
)
rv <- produceManualPage(ic, pc, gc)
```
### generated `r citecode('.Rd')` file
```{r eval = TRUE, echo = TRUE}
readLines(rv$context$filename)
```
### generated content as picture
![generated append documentation](images/pkg.png)
# Manual page generation for data
## Standard `r R` object {.tabset .tabset-fade .tabset-pills}
I will consider data named `r citecode('dummy')` to generate documentation from.
### code
```{r eval = TRUE, echo = TRUE}
ic <- InputContext(dummy, dataFilename = 'dummy.csv')
pc <- ProcessingContext(
extraneous_l = list(
description = 'a dummy datafile for demonstration purpose',
format = 'a data.frame 9x2',
source = 'fake data - used only for demo'
),
postProcessing_l = list(
classification = function(content_s) NULL
)
)
rv <- produceManualPage(ic, pc, gc)
```
### generated `r citecode('.Rd')` file
```{r eval = TRUE, echo = TRUE}
readLines(rv$context$filename)
```
### generated content as picture
![generated append documentation](images/data.png)